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Abstract

Spacecraft control, state estimation, ard fault-detection-and-

isolation systems are affected by unknown _ ariations in the vehicle

mass properties. It is often difficult to acclrately measure inertia

terms on the ground, and mass properties can change on-orbit as

fuel is expended, the configuration changes or payloads are added

or removed. Recursive least squares-based a Igorithms that use gyro

signals to identify the center of mass and inverse inertia matrix are

presented. They are applied in simulation to 3 thruster-controlled

vehicles: the X-38 and Mini-AERCam under development at

NASA-JSC, and the $4, an air-bearing spa_:ecraft simulator at the

NASA-Ames Smart Systems Research Lab I SSRL).

1. Introduction

The mass-property identification (ID) algorithms presented here

were developed through application to _wo thruster-controlled

spacecraft presently under development at NASA Johnson Space

Center: the X-38 [14] and the Mini-AERCam, and to the SSRL $4.

Fig 1: X-38, Mini-AERCam, and SSRL air-bearing vehicle, $4

The goal is to identify, on-line, the mass woperty parameters of a

thruster-controlled spacecraft. Specifically, he terms of the inverse

inertia matrix and the location of the mass center are identified

using gyro measurements during periods of thruster firing. The

application vehicles, X-38, Mini-AER(am, and $4 are all

exclusively thruster controlled and the derivation follows that, but

it is a simple extension to accommodate CMGs or reaction wheels

(as in [2]). Accelerometers would improve the ID, but gyros only
are used, broadening the applicability of the resulting algorithm•
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1.1 Related research

Tanygin and Williams [9] developed a least squares (LS) based

algorithm to identify mass properties for a spinning vehicle during

coasting maneuvers. Bergmann et al [2][3][8] developed a Kalman-

filter based approach to the mass-property ID problem. A careful

comparison of this approach to the recursive least squares (RLS)

approach presented here has not yet been completed. Wilson and

Rock [1 t][12] developed an ID method based on exponentially

weighted RLS using accelerometer and angular rate sensors• The

acceleration created by each thruster (reflecting both mass and

thruster properties) was identified. A neural network then provided

adaptive control reconfiguration to multiple destabilizing hard and

soft thruster failures. This was implemented on a 3-degree of-

freedom air-bearing vehicle. Wilson, et al developed a model-based

thruster fault detection and isolation (FDI) system for the vehicles

presented here [13]. These mass-property ID algorithms were

developed to improve model accuracy for that system•

1.2 Least-squares identification

In this paper, vehicle mass properties are identified using LS

methods in which the sensor data is fit to the underlying equations

of motion (EOM) such that the identified parameter values

minimize the squared error (where error is, for example, sensor
data minus the ideal sensor data that would occur with zero noise

and using the identified parameter values).

The standard form for a linear least squares problem is given as

Ax = b + e or Ax -- b

where b is a vector of noise-free measurements, E is a vector of

measurement noise, x contains the parameters to be identified,

and matrix A contains known variables and parameters (i.e., A is

noise-free). The _ in mx -_ b indicates that the left and right

sides of the equation would be equal if noise were not present [6].

The LS ID solution, ._, minimizes the sum of the squares of the

error, A,'_ -b. If the problem at hand can be put into this standard

form, ._ can be solved directly using a batch algorithm,

_c= (ArA)-iArb,o r an exactly equivalent recursive algorithm

[4][5][6]. Manipulating the original equations into the form

Ax -- b so that the standard LS solution can be solved is often

the primary challenge, requiring careful, application-dependent

decisions regarding approximations.

The rotational EOM (derived later) contain all of the parameters to

be identified: center of mass (CM) location, contained in L, and

inertia. Unfortunately, these parameters multiply one another, and

cannot all simultaneously be manipulated into the desired linear

form, Ax _ b. The approach taken here addresses this issue by

segmenting the ID problem into two sub-problems which both

allow closed form solution.



2. Approach

For the vehicle applications studied, the presence of disturbance
torques, imperfect rate measurements, and significant pulse-to-

pulse thruster variability biased development towards one of

minimal complexity (e.g., dropping higher order terms, segmenting

the problem, etc.). Before going into the equations, it is useful to
understand the basic physics behind the ID a0proach:
1. The rotational EOM mathematically describe how forces and

torques will affect rotational accelerations. The inertia matrix

governs the acceleration that will result from an applied net

torque, allowing LS ID of 1-1 . The CM location determines

the angular acceleration that will result t'rom an applied force.
2. When thrusters are fired to produce a pure torque only, the

CM location has no effect on angular acceleration. So the CM

ID cannot be updated using this data. Also, inertia ID will not

be biased by an incorrect CM ID estimate.

3. When force and torque are applied simtdtaneously, inertia and
CM can each be identified individually.

4. When no external forces or torques are applied, disturbances

due to thruster variability are removed. With sufficiently high

angular rates and sufficiently low seas,_r noise, accelerometer

signals can be used along with the gyros to ID the CM
location. This has been developed and implemented by the

authors for a vehicle with relatively Icw sensor noise levels

in [9]), and is not presented here.

Specifics regarding this approach for gyro-b_ sed mass-property ID:
• Due to the form of the EOM, the inve_e of the inertia matrix

is identified (i.e., ]-I vs. i ).

• Only the six independent elements of ] -I are identified.

• i -I and CM updates are made only when thrusters are firing.

• Perfect knowledge of thruster failures arm biases is assumed.

• If pure torques occur frequently, item 2 above is followed, so

i-i updates are made only when a pure torque is present

(assuming that fewer clean data points are better than more
noisy ones, and that the CM error would bias the estimate).

3. Derivation of mass-property RLS ID algorithms

In this section, the relevant EOM are derived, containing the

measurements and parameters of interest. Then these EOM are

manipulated into forms that allow ID, first of the mass center and
second of the inverse inertia matrix. Once the equations are in the

proper form, either batch LS or RLS can be iraplemented.

3.1 Equations of motion
Starting with Euler's dynamical equatior, and assuming the
spacecraft inertia matrix is constant, the rotat onal EOM are [1]:

rb = l-l(z -_Ito), or, showing individual elements,

[_'l FI_-: I,_ ,,_TFz, I F 0 -0_3 m! ]I,, 1,2 1,31_lla,:/=|/S 0 -t,, 1,2 122

[z,1 ,=-', o,, I,3 I2_ 1,3.1_to,J)
-1

where [ is the spacecraft inertia matrix (and I V , indicates the

(i,j) element of I -L rather than 1/1,j), 09 is the angular

velocity of the body-fixed frame with r,:spect to an inertial

reference frame, _"is the sum of all torques en the body (thrusters,

reaction wheels, CMGs, disturbances, etc.), and O_ is used to

represent the matrix-multiply implementation of the cross product.

The total torque, T, about the true CM (which is not known

exactly) due to the thrusters and torque disturbance is modeled as:

q_ =q_ thrusters+'_ disturb= (Lx D)Fk + z a_....

where _thrusters' represents the net thruster torque. L and h are

[3-by-N ] matrices ( N is the number of thrusters) containing the
location and direction of each thruster, measured in the body frame.
Each column contains the information for an individual thruster,

and the cross product operator shown here indicates that the i 'h

column of L is crossed with the i th column of D and entered

into the i th column of the resulting [3-by- N ] matrix.

Fk, the thrust magnitude from each individual thruster at each

control update, k, can be expressed as the following function,

which accounts for (in order in the equation): reduction in thrust
due to blowdown; nominal thruster magnitude; constant random

bias added to the nominal value; random pulse-to-pulse offset

added to the nominal value; thruster firing (on/off). A further

refinement in calculating F k would be to also model the transient

nature of the thrusters, accounting for rise, trail off, and latency;

F, = B(Fo. + Fb,o, + Fo._o,_:, )T,

B and Fbias can be identified separately. In this analysis, the ID

algorithm uses their nominal values (B= 1,Fb_o,=0), but their true

random values are used in the simulation for testing.

Combining the above results, the full rotational EOM reduce to

69 = I-'((L xD)a(F,o . + Fb,o, + Fo,_o,_k)Tk +ra,.,,_s-- tox (109))

The EOM are modeled assuming that the acceleration is constant

during each control sample period; the ID algorithms require

acceleration estimates corresponding to these control sample

periods. The applications presented here estimate angular

acceleration, (Jg, using rate gyros [13], but any method could be

used (e.g., using Kalman filtering, star trackers, accelerometers).

3.2 Identification of the mass center

The mass center, C (measured in the structural frame), determines

the origin of the body frame, and thereby determines the value of

Z, which contains the locations of each thruster in the body frame.

Similarly, A, the difference between actual and nominal values of

C determines Z. A is the value that will be identified here.

C--C,o +A;L=L,o -All I ... 1]

Recalling the rotational EOM, substituting and rearranging some

terms, and setting B = 1, Fb_` = 0, F_,ao_ k = 0,'ra_,_b = 0,

¢b = I-' ((L × D)F.o.T , - 09 x (I¢o))

IoJ+wx(Ro)=((L,o -A[1 l ... ll)×D)F,o=Tk

Trying to get this equation in the form Ax _- b with A as X,

Itb+og×(Im)=(L.oXO)F.o.,Tk-(A[I l ... 1]xD)F.o,.T_



Sincethe columns of All 1 ... 1] are all the same, the second

term on the right can be regrouped. Note as a counter-example that

the first term on the right cannot be similarly regrouped because the

columns of Zno,n are not all the same,

Rb + ogx(Iw) = (L.o _ x D)F.o,.T k - (kx (DF.o.,T,))

Ax (DFo Tk)=(Lo,.XD)FoT k -/oJ- o9 x(Io9)

By the anti-commutative property of tl_e cross product (that

axb = -(bxa)), the left side is changed to

( DFo, T , )x A = (L o,. × D)Fo,..T k - f69 - co × (Io9)

The right side (the b in Ax __ b ) can be calculated. Introduce a

variable, c, - DF_o,..T k (a 3-by-1 vector), then re-write using the

matrix-multiply implementation of the cross-product, as

0 l-c3 o c,
C 2 --C I 0 J, La3J

i i i

The measurements in this equation show ap in the 0) and (J)

terms only. The 0) X (10)) term is very srr all (and can be omitted

for the applications studied here), so ¢;) is the main noise

contributor. The LS problem is defined (arid closed-form solution

developed) assuming the measurement noise enters without pre-

multiplication. So, pre-multiplying by 1-1 ,nd changing sign,

o _c, c+l?,l0 -c,/?=/ ....
L-C_ c, 0 J,LA,J

6j + l-'(m x(lm)) -l-'(L,.o,.xD)F.o. T+

The o9 x(/tO) term is still pre-multiplied, bat that is likely to be an

insignificant number. So at each updae, c k -DF, o,y k is

calculated and plugged in to the above re-formulation of the

equation of motion, which conforms to Ax -- b, where

f0+cIA+ =I-' c s 0 -c, ' x= L_2 '

L-C2 c, 0 , Ll_sJ

b+ =69 + I-' (og x ( Io9)) - l-' (L.o,. X D )FomTk

3.3 Identification of the Inverse Inertia matrix

ID of ]-1 is similar to that for A: fie rotational EOM are

manipulated to a form as close as possible _o Ax _ b. Recalling

the original rotational EOM and simplifying as before,

69 = I -I ((L x D)Fo,.T , - 02 x (lo9))

I-t (( L x D)Fo Tk - oJ x (lo9)) = tO

Introduce a variable, ak = (L x D)t'_o,T k -ogx (Io9), so

I-'a k = 62. The I-'a, matrix-vector multiplication is converted

into an equivalent expression where the <, independent terms in

I-' appear in a vector that is pre-multipliec by a matrix.

Ill]' I_2' l(3']a,l

,'.,=1,c2'Iz-_ Z ;/la2/
L/_-3' 12-'3 I;]JLa, J,

a I a2 a 3

= a 2 a I a+

a 3 at a2 _

Fa,IF,,+a21(_ +asl(s' 1
La,G' +a212-_ +a31 _

r-I-]

II

_q
22

r4
33

r4
12

rq
13

r-I

23

So now the equation is in the standard form, Ax -- b, where

I,;g/
' :43 / ' bk = _k[a "'tA k : a 2 at a3

x= I_ I

as aL a2 i 12

: I_'

]q- 23

For both mass-center 1D and inertia ID, measurements at multiple

time steps are combined as follows if the batch LS solution is used.

d = A2 ' b= b2

LA,

3.4 Deviations from standard LS ID form

_e r_u_sive or batch LS solution, _ : (AL4)-_A_b, will _ly

minimize the quadratic error if the manipulated equations comply

with the standard form, AX = b + e. Deviations from this form in

the results of the preceding manipulations are that:

1. Noisy measurements appear in the 0) X (]0)) term in the A

matrix. However, for the relatively slow rotational speeds in

many spacecraft applications, this term is negligible.

2. Other terms in A and b are not known perfectly: L, D,

B, Fbias, etc. are all estimated or nominal values.

3. Random variables Fm,,ao,. ,k and Z'aist_t, that were set to zero

do not appear directly in the E term as they should.

CM ID uses nominal or estimated values for ] and ]-l.

Inertia ID uses nominal or estimated values for L (CM).

4.

Due to the form of the underlying EOM, it is not possible to exactly

comply with the standard form. The preceding manipulations and

approximations to the EOM were chosen for this class of

applications, attempting to minimize the expected effects of the

inevitable resulting deviations. With different typical values of CO,

disturbances, sensor accuracy, actuator variability, control policy,
etc., different formulations may be better (e.g., [9]).

Also, the assumptions that acceleration is constant during each

control update, and that thruster response time is zero will degrade
the ID results if not compensated for.



4. Simulation Results

A dynamic simulation was developed using MATLAB [7] that
included: the rotational and translational [_OM; different sample
rates for control and sensing; a thruster contl ol system; and realistic

variations in all relevant system parameters (mass properties,
thruster properties and pulse-to-pulse noise, _ensor noise).

The accuracy of the ID results depends on the sensor noise, thruster

variability, and variability in non-identifizd system parameters

(such as thruster direction, D, and bias, }:_,ias)" These RLS mass-

property ID algorithms have been implemented and successfully
tested for the three dissimilar spacecraft mez;tioned. In this section,
results for one, the Mini-AERCam, are presented as an example.

The Mini-AERCam (upper right of Figuxe 1) has 12 thrusters
controlling all 6 degrees of freedom, and uses MEMS gyros. In this
test, the system was excited automatically by randomly perturbing
the desired position and attitude, causing thrusters to fire, providing

both torques and net forces on the vehicle.
i .
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Fig 2: Mini-AERCam inertia-inverse ID results
Figure 2 shows the results for ID of the inve:se inertia matrix. True
values are drawn as solid lines; ID updates a-e drawn as dots. Since

pure torques are common for this vehicle, irertia ID updates occur
only when nominally pure torques are appiied - resulting in the

gaps between updates.
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Fig 3: Mini-AERCam mass-center ID results
CM ID results are shown in Figure 3. As with inertia ID, the ID is

initialized at the nominal values, which is zero in this case. CM

information is not present when pure torques are applied, so there

are no updates at these times (or when no thrusters fire), resulting

in the gap between 2 and 5 seconds. In both inertia and CM ID, ID
accuracy is better than the vehicle spec based on ground analysis

and measurement (+5 mm for CM in this example), making the ID

useful for on-line adaptive control.

Although they are run independently in the,,e tests, use of CM ID
results in the inertia ID calculations (i.e., tsing ID'ed instead of

nominal CM information) and conversely w(: uld improve results.

5. Conclusions

Separate mass-center and inverse-inertia-matrix ID algorithms have

been developed and applied in simulation to the X-38, Mini-
AERCam, and $4 thruster-controlled vehicles. Using gyro signals

only, and based on recursive least squares, the algorithms reliably

and accurately ID mass properties for these vehicles in the presence
of several significant noise sources. The algorithms are

computationally efficient and can be run either on-line for adaptive

control (RLS) or off-line for post-flight analysis (batch LS).
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